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Figure 1: We evaluate self-avatars with three different types of animation fidelity as shown in (a): Unity IK, Final IK and Xsens
IMU-based MoCap. We compare them in three tasks involving varied body parts: (b) Copy-pose task, (c) Step-over-spikes task,
and (d) Pick-and-place task.

ABSTRACT

The use of self-avatars is gaining popularity thanks to affordable VR
headsets. Unfortunately, mainstream VR devices often use a small
number of trackers and provide low-accuracy animations. Previous
studies have shown that the Sense of Embodiment, and in particular
the Sense of Agency, depends on the extent to which the avatar’s
movements mimic the user’s movements. However, few works study
such effect for tasks requiring a precise interaction with the envi-
ronment, i.e., tasks that require accurate manipulation, precise foot
stepping, or correct body poses. In these cases, users are likely to
notice inconsistencies between their self-avatars and their actual
pose. In this paper, we study the impact of the animation fidelity of
the user avatar on a variety of tasks that focus on arm movement, leg
movement and body posture. We compare three different animation
techniques: two of them using Inverse Kinematics to reconstruct
the pose from sparse input (6 trackers), and a third one using a
professional motion capture system with 17 inertial sensors. We
evaluate these animation techniques both quantitatively (comple-
tion time, unintentional collisions, pose accuracy) and qualitatively
(Sense of Embodiment). Our results show that the animation quality
affects the Sense of Embodiment. Inertial-based MoCap performs
significantly better in mimicking body poses. Surprisingly, IK-based
solutions using fewer sensors outperformed MoCap in tasks requir-
ing accurate positioning, which we attribute to the higher latency
and the positional drift that causes errors at the end-effectors, which
are more noticeable in contact areas such as the feet.
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1 INTRODUCTION

Virtual reality headsets allow us to immerse ourselves in highly
realistic digital worlds. A fundamental aspect of feeling present in
these virtual environments is to have a virtual representation of our
own body, known as the user’s self-avatar. Ideally, avatars should be
animated in a way that allows users to achieve natural behaviors and
interactions in the virtual environment, as well as to use non-verbal
communication with others. Self-avatar is the virtual representation
of oneself and should be distinguished from other people’s avatars
as they have different requirements. Aspects such as latency or end-
effectors and pose accuracy are more crucial for perceiving one’s
own avatar than for others.

Unfortunately, the limited number of trackers in consumer-grade
devices severely restricts the quality of the self-avatar’s movements.
Most applications limit the representation to floating upper bodies
(no legs) with floating hands/globes/tools, sometimes with the arms
animated with Inverse Kinematics (IK), by using the tracking data
from the HMD and the hand-held controllers. Only a few applica-
tions offer a full-body representation. However, due to the lack of
trackers, legs are typically animated by playing cyclic time-warped
animations. With these solutions, users may notice inconsistencies
between their movements perceived via proprioception and those of
the self-avatar.

Previous work has demonstrated the importance of having a self-
avatar that moves in sync with the user [9,10,33]. If we focus on the
overall movement without further interaction with the virtual world,
current animation techniques based on IK from sparse tracking data
may suffice. However, if accurate body poses and positioning of
end-effectors matter, then artifacts that affect user performance and
the Sense of Agency may pop up. For example, consider the task of
building some assembly by holding pieces and putting them in spe-
cific locations. In that case, hand-eye coordination is crucial, as is the
accuracy of the overall pose, to prevent parts of the arm/body from
colliding with other pieces. Another example is moving through a
room full of obstacles, where accurate foot positioning is also cru-
cial. Finally, correct body poses also matter in the case of learning
to dance or practicing yoga by mimicking an instructor [9].

Given that high-quality motion capture is difficult to achieve
with sparse input data, we are interested in studying how animation



fidelity affects user performance and embodiment. By animation fi-
delity, we refer to the quality of the animations in terms of accurately
following the user poses as well as the correct absolute positioning of
the body parts. More specifically, we evaluate interactions with the
virtual world that need pose and/or positional accuracy. We evaluate
embodiment with a perceptual study, in which our main focus is on
the Sense of Agency due to its relationship with animation fidelity.
Furthermore, we study the effect of the quality of the interaction
with the virtual world on user performance by measuring completion
time and unintentional collisions. We focus on two popular methods
based on Inverse Kinematics from sparse input data (6 trackers):
UnityIK1 and FinalIK2, and one motion capture system based on a
large number (17) of inertial sensors: Xsens Awinda3.

Our results suggest that animation fidelity affects the Sense of
Embodiment and user performance. We found that a straightforward
IK solution, such as Unity IK, decreases the Sense of Embodiment
when compared to high-quality IK and MoCap solutions. However,
when interacting with the environment, having lower latency and
minimal end-effector positional error may be more important than
synthesizing high-quality poses suffering from positional drift.

The main contributions of this paper are:

• To the best of our knowledge, this is the first study to compare
an IMU-based full-body motion capture system to IK solu-
tions for animating self-avatars in VR during tasks that require
accurate positioning of end-effectors and body postures.

• We study the relationship between animation fidelity on user
task performance and the Sense of Agency to improve future
research on VR avatar animation from sparse data.

2 RELATED WORK

2.1 Self-avatars and animation fidelity
A self-avatar is a virtual representation of one’s own body from a
first-person view of the virtual environment (VE). Previous studies
have shown that full-body self-avatars are beneficial in various tasks,
such as egocentric distance estimation, spatial reasoning tasks, and
collision avoidance [22, 23, 28]. For instance, compared to not hav-
ing an avatar, users with a full-body realistic avatar collide less fre-
quently with the VE [23]. Similarly, Ogawa et al. [20] demonstrated
that users would be less likely to walk through the virtual walls if
equipped with a full-body representation compared to a hands-only
representation. In social settings, using full-body self-avatars would
enhance social presence and communication efficiency [1, 41].

Animation fidelity is a crucial component of self-avatars. Unlike
visual fidelity, which addresses the appearance of avatars and has
been extensively studied [4, 11, 12, 20], animation fidelity focuses
on how accurately and synchronized the self-avatar mimics users’
real-world movements. We could use avatars with the highest visual
fidelity (with a realistic full-body self-avatar), but low animation
fidelity if the body poses are not well mimicked, not in sync with
the user, or have errors in the positioning of end-effectors. These
avatars are unlikely to induce the user’s feeling of owning or being
in control of the virtual body [17, 36]. These kinds of problems
may be introduced by the tracking system or by the methods used to
capture and animate the self-avatar.

Inverse Kinematic (IK) solvers can be used with sparse input
from VR devices to calculate joint angles of the articulated human
model. Some frameworks are available to animate full-body avatars
from six trackers (HMD, two hand-held controllers and three Vive
trackers) [21, 26, 42]. Parger et al. [24] proposed an intuitive IK
solution for self-avatar’s upper-body animation with one HMD and
two controllers. Their IK solver outperformed an optical MoCap

1https://docs.unity3d.com/Manual/InverseKinematics.html
2http://root-motion.com/
3https://www.xsens.com/products/mtw-awinda

system in terms of lower latency and accurate pose reconstruction.
The reduced Jacobian IK solver proposed by Caserman et al. [3] can
smoothly and rapidly animate full-body self-avatars with HTC Vive
trackers.

Recently, researchers have shown an increasing interest in data-
driven methods to reconstruct full-body animation for avatars from
VR devices. For instance, Winker et al. [37] proposed a reinforce-
ment learning framework with physical-based simulation to achieve
real-time full-body animation. Ponton et al. [27] combined body ori-
entation prediction, motion matching and IK to synthesize plausible
full-body motion with accurate hand placement. Jiang et al. [14]
used a transformer model to estimate the full-body motion. Other
researchers have looked at using a sparse set of wearable IMUs to
estimate full-body motion. These methods could be integrated into
self-avatars in VR because of the built-in IMUs on VR headsets,
controllers and trackers. For example, Huang et al. [13] used a
bi-directional RNN to reconstruct a full-body human pose from six
wearable IMUs attached to the head, arms, pelvis, and knees. Yi et
al. [40] took the same input, but generated both accurate pose and
precise global translation. More recently, Jiang et al. [15] not only
accurately estimated the full-body motion but also handled the joint
and global position drift that most IMU systems suffer from.

While there is an extensive body of research proposing new anima-
tion methods to improve animation fidelity for avatars, little interest
has been given to how the animation fidelity of self-avatars impacts
user performance, perception and behavior in a VE. Fribourg et
al. [9] showed that users preferred to improve animation features
when asked to choose among appearance, control (animation) and
point of view, to improve the Sense of Embodiment (SoE). In their
work, participants preferred mocap based on Xsens over FinalIK.
However, their input to the IK system was the joints positions from
the Mocap system, and thus the problems with incorrect end-effector
positioning and latency were carried on to the IK condition.

Galvan et al. [10] adapted the same methodology to examine the
effect of animation fidelity of different body parts. Participants were
first exposed to optimal animation fidelity (53-marker optical motion
capture). Then, they started with minimal animation fidelity and
repeatedly chose one body part to improve until they felt the same
level of the SoE as with the optimal configuration. They found users
felt the same level of the SoE with an IK solution with eight trackers
than with the 53-marker optical motion capture system. Their work
also found that the unnatural animation of the full body caused
disturbing feelings for users when separately animating the upper
body and lower body with different fidelity. Thus, our work focuses
on full-body animation instead of body parts to avoid breaking
the user’s presence. Eubanks et al. [8] explored the impact of the
tracking fidelity (number of trackers) on a full-body avatar animated
by an IK solver. They found that a high number of trackers could
improve the SoE. However, animation fidelity is not only about
tracking fidelity, but also about the animation techniques underneath.
Our study thus compares not only systems with different numbers of
trackers, but also different animation techniques: IK and IMU-based
motion capture.

2.2 Sense of Agency

The Sense of Agency (SoA) has been characterized in various ways
in different contexts because of its interdisciplinarity property. From
the point of view of psychology, the SoA refers to the feeling that
I am the one causing or generating an action [6]. In the field of
VR, the SoA is the feeling of being the agent who conducts the
motions of an avatar. It results from synchronizing one’s real-world
movements with virtual body motions.

The Sense of Agency is a crucial subcomponent of the Sense
of Embodiment. According to Kilteni et al. [16], the SoE consists
of three subcomponents: the Sense of Agency, the Sense of Self-
Location (SoSL), and the Sense of Body Ownership (SoBO). Many



studies have studied the impact of single or multiple factors, includ-
ing avatars’ appearance, visibility and tracking fidelity, on the SoE.
Fribourg et al. [9] explored the relative contributions of the control
factor (i.e. animation fidelity), appearance and point of view that
contribute to the SoE. Results showed that control and the point of
view were preferred when people had to choose among the three
factors to improve their SoE. Recent studies showed that low-quality
tracking, which directly impacts the animation of self-avatar, can
decrease the embodiment [8, 33]. These findings analyzed the ef-
fect of the SoE, which is directly or implicitly related to animation.
However, there is still a gap in how the animation fidelity directly
impacts the SoE, specifically the subcomponent SoA.

The synchronicity of visuomotor correlation can induce the SoA,
while discrepancies can decrease it. Kollias et al. [19] simulated
different kinds of motion artifacts that may occur in a real-time
motion capture system. They examined the effect of these artifacts
on the SoE, specifically on the SoA. Results showed that the artifacts
negatively affected the SoA, but not the SoBO.

Studies regarding the SoA mainly focus on subjective perception
with questionnaires and objective brain activity measurements such
as fMRI and EEG. As suggested by Kilteni et al. [16], the motor
performance of VR users should be positively correlated with the
SoA, under the assumption that a fine-controlled virtual body per-
forms motor tasks more successfully. Therefore, the users’ motor
performance in VR could be used to measure the SoA objectively.
Our study measured task performance in terms of unintentional col-
lisions between the self-avatar and the virtual obstacles. We believe
that the number of collisions and their duration could bring insights
into human motor performance in 3D space. High animation fidelity
means precise control of self-avatars which can perform better in
motor tasks. Therefore, we expected to observe the impact of anima-
tion fidelity on collisions, completion time, and the correctness of
the body poses.

3 ANIMATION FIDELITY STUDY

This study aims to assess the importance of animation fidelity on
the users’ performance and the SoE when performing a set of tasks
that require careful positioning and/or accurate poses. We want to
study the importance of the virtual body correctly mimicking the
user’s movements as well as the impact of accurate end-effector
positioning.

3.1 Experimental conditions
In this study, we adopted a within-subject experiment design with
one independent variable: the animation fidelity for the virtual avatar.
We designed three conditions for the animation fidelity variable:
Unity Inverse Kinematics (UIK), FinalIK (FIK) and motion capture
with Xsens (MoCap). These techniques provide different levels
of animation quality in terms of end-effector positioning (more
accurate in UIK and FIK since hand-held controllers and trackers
provide accurate absolute positioning), pose angles (more accurate
in MoCap thanks to a larger number of sensors), and latency (higher
for MoCap). The first two conditions differ on the IK solvers, while
both use sparse tracking data from consumer-level VR devices. The
last condition, MoCap, uses tracking data from a professional motion
capture system with 17 IMU sensors. Fig. 2 illustrates the equipment
used for tracking in the three conditions. The three conditions used
have been implemented as follows (see accompanying video):
UIK: This condition uses Unity 2020.3 game engine’s built-in IK
solver for animating the avatar’s limbs (2-segment kinematic chains).
It is important to note that it does not consider the full-body pose
when solving the IK. Instead, it independently computes each limb’s
joints based on one target end-effector. To further improve the
overall body pose, forward kinematics (FK) is included to animate
two joints: head and spine, so that the self-avatar can lean forwards
and sideways. IK and FK together generate a full-body animation

Figure 2: Equipment and conditions. For the experiment, partici-
pants were simultaneously equipped with two sets of tracking de-
vices: VR devices ( HMD, controllers and three trackers); and the
trackers from the Xsens Awinda mocap system. The tracked body
parts are shown in the figure. Different IK solvers were applied to
animate the avatar using the VR tracking devices.

for the avatar from the tracking data in the HMD, the hand-held
controllers and three additional trackers located on the pelvis and
the feet.

FIK: This condition uses the VRIK solver from RootMotion’s Fi-
nalIK package, which combines analytic and heuristic IK solvers
for generating the full-body avatar animation. With the same input,
FIK produces higher-quality results than UIK because each limb
is not solved independently from one end-effector, but rather from
an analysis on the user pose from several end-effectors [35]. For
instance, the spine is solved considering the position of the HMD
and two hand-held controllers, and the elbows use the position of
the hands relative to the chest joint to determine the orientation.
The only exception are the legs, which are solved independently but
using a 3-joint dual-pass trigonometric solver (first solve the knee
and then the ankle).

MoCap: The Xsens Awinda system receives acceleration, angular
velocity and magnetic field data from 17 body-worn IMUs, processes
the data with Strap-down Integration and Kalman filtering, and then
outputs the rotations of the joints of the avatar, which are streamed
to Unity via UDP; these processing steps increase the latency with
respect to the previous conditions. IMUs suffer from a positional
drift over time, that might break the Sense of Self-location. To
enforce the correct location of the avatar with the user, we use the
pelvis tracker to position the avatar in the VE. However, this does not
guarantee accurate positioning of the end-effectors and can suffer
from foot sliding. Foot lock is applied to reduce the foot sliding of
the Xsens pose when the foot touches the floor. Once the foot is
locked, we store the position of the HTC tracker, which we will use
as a reference to detect whether the user is moving the foot. In the
following frames, if the distance between the current HTC tracker
and its initial position is larger than a relatively small threshold
(1 cm), we unlock the foot; otherwise, it will noticeably modify the
leg pose. Note that we are locking the foot at the position given by
Xsens (thus, it may contain positional error); we only use the HTC
tracker to detect whether the user’s foot remains on the ground.

Each participant performed the same three tasks for each condi-
tion. Conditions were counterbalanced between participants using a
Balanced Latin Square, which ensures each condition precedes and
follows every other condition an equal number of times [7].



Figure 3: Timeline for one participant (top) with details on the tasks (bottom). The participants were asked to complete three consecutive tasks
followed by the questionnaire for the first condition, and then repeat the procedure with the other two conditions. During the first two tasks, the
volume of the small colliders were recorded (green), and users had visual feedback from the obstacles (in red) every time a collision occurred.
For the copy-pose task, the pose-related metrics were calculated. Questions and buttons for answering were displayed on a whiteboard in VR.

3.2 Tasks
Prior studies have shown that the type of actions users perform in a
VE influences users’ perception [9, 34]. For instance, when picking
up nearby objects, people would pay more attention to the upper
body while their ignoring surroundings [5]. Similarly, walking in
a room with obstacles on the floor would draw people’s attention
to objects and lower body parts to plan the future path and avoid
collisions [32]. We thus designed three tasks that cover a wide range
of common actions in VR games and applications, while each task
focused on a different interaction pattern between the virtual body
and the VE (see Fig. 3 and accompanying video).

• Step-over-spikes task focuses on direct interaction between
the lower body and the VE. It consists of walking and lifting
the knees to avoid colliding with spike-like obstacles while
stepping on small platforms.

• Pick-and-place task focuses on direct interaction between the
upper body and the VE. It consists of picking up objects and
then placing them at specific target locations while avoiding
collisions between the arm and nearby obstacles.

• Copy-pose task involves only non-direct interactions between
the virtual body and the VE. More specifically, we focus on the
overall pose of the self-avatar without caring about the exact
global positioning of the avatar. For this task, we show a 2D
projection of an avatar in a certain pose on a virtual screen,
and then the user is asked to mimic the pose as accurately as
possible. The design is inspired by OhShape4.

One task block consisted of the following three sequential tasks,
which were presented in the following order: (1) step-over-spikes
task; (2) pick-and-place task; (3) copy-pose task. Each task con-
sisted of ten trials separated by five seconds of rest. We decided
to use this task order to guarantee that the last task before each
SoE questionnaire (see below) equally involved the upper and lower
limbs. Participants were requested to complete the entire task block
for each of the three conditions on a recurrent basis.

3.3 Apparatus
The experiments were conducted in an acoustically-isolated labo-
ratory room with a 3 m x 6 m space. The VE was developed with
Unity 2020.3 LTS and run on a PC equipped with a CPU Intel Core
i7-10700K, a GPU Nvidia GeForce RTX 3070 and 32 GB of RAM.
We used an HTC Vive Pro HMD with 1440 × 1600 pixels per eye,
110◦ field of view and 90 Hz refresh rate. Three 6-DoF HTC Vive
trackers 3.0 were used for tracking the pelvis and feet. Two HTC

4https://ohshapevr.com/

Vive controllers were held in both hands of the participants. We
installed four SteamVR Base Station 2.0 in each corner of the room
to minimize line-of-sight occlusions.

We employed the well-established frame counting approach
[3,31] to determine the latency of the tracking system and the anima-
tion techniques used in our experiment. One person was equipped
with all tracking devices and repeatedly moved one arm up and
down. We used a high-speed 240fps camera to record both the
person and a monitor showing the VE. The mean latency from the
physical controller to the animated virtual hand was 32 ms for UIK
and 33 ms for FIK. These latencies include the SteamVR tracking
system, IK solver computation and rendering. For MoCap, the mean
latency was 91 ms, which was notably higher than the other two
conditions. The MoCap latency includes the IMU-to-Xsens soft-
ware latency (∼30 ms 5) [25], motion processing in Xsens software,
network communication, motion data unpacking in Unity (∼5 ms),
and rendering.

3.4 Procedure
A total of 26 participants took part in the experiment (22 male, 4
female, aged 19-40, M = 22.4, SD = 5.5) but one participant’s data
was discarded due to a calibration failure.

Upon arriving at the experiment room, participants were in-
structed to read the information sheet and complete the consent
form and a demographic survey detailing their age, gaming and VR
experience. We introduced their body measurements to the Xsens
software in order to obtain a scaled avatar matching the user’s dimen-
sions. Then we placed the 17 wireless trackers on the body of the
participant, with the help of a t-shirt and a set of straps. Participants
were asked to walk a few meters to calibrate the IMU-based motion
capture suit. The calibration was repeated until the Xsens software
(MVN Animate Pro) rated it as a ”Good” (among ”Good”, ”Accept-
able” and ”Poor”). The experimenter also validated visually that the
subject’s pose closely matched that of the avatar. Next, participants
were equipped with an HTC Vive HMD, two hand-held controllers
and three Vive trackers placed on the pelvis and both feet. They were
asked to stand in a T-pose to complete the calibration of the HTC
trackers for the IK solvers. During the experiment, participants were
equipped with both tracking systems at all times. This ensured that
they could not guess what system was being used for each condition.
Before each task, participants watched a tutorial video (two minutes
in total) that demonstrated how to perform the task.

3.5 Measurements
The step-over-spikes task challenges the participants’ lower-body
motion so that we can quantitatively assess the effect of animation

5https://base.xsens.com/s/article/MVN-Hardware-Overview



Agency - Scoring: (AG1 + AG2 + AG3 + AG4 + AG5 + AG6 + AG7) / 7
AG1 The movements of the virtual body felt like they were my move-
ments.
AG2 I felt the virtual arms moved as my own arms.
AG3 I felt the virtual elbows were in the same position as my own elbows.
AG4 I felt the virtual hands were in the same position as my own hands.
AG5 I felt the virtual legs moved as my own legs.
AG6 I felt the virtual knees were in the same position as my own knees.
AG7 I found it easy to control the virtual body pose to complete the
exercises.

Ownership - Scoring: (OW1 + OW2 + OW3) / 3
OW1 It felt like the virtual body was my body.
OW2 It felt like the virtual body parts were my body parts.
OW3 It felt like the virtual body belonged to me.

Change - Scoring: (CH1 + CH2) / 2
CH1 I felt like the form or appearance of my own body had changed.
CH2 I felt like the size (height) of my own body had changed.

Table 1: Questionnaire content. The scores are on a 7-Likert scale (1
= completely disagree, 7 = completely agree).

fidelity on the interaction between the lower body and the VE. Sim-
ilarly, the pick-and-place task is intended to assess the impact of
animation fidelity on the interaction between the upper body and the
VE. To evaluate these two tasks, we took measurements regarding
collisions and completion time. More specifically, we recorded: the
total collision volume (Vc), the collision duration (Tc), the number
of collisions (Nc), as well as the task completion time (Ttask). This
data was converted into more intuitive metrics as follows:

• Volume per collision v =Vc/Nc. It reflects how deep the avatar
penetrated the obstacle during each collision, on average.

• Duration per collision t = Tc/Nc. It measures the average
penetration time of the avatar into obstacles and how quickly
participants corrected the collision when it occurred.

• Collision frequency f = Nc/Ttask. It reflects how often the
avatar collides with obstacles while performing the task. It is
specified as the number of collisions per second.

With these metrics, we investigated the relationship between the
animation fidelity and the virtual body-obstacle collisions. To accu-
rately capture the volume and duration of collisions, a set of invisi-
ble small cubic colliders (Vcollider = 8 cm3) were used to match the
shape of each obstacle.

The goal of the copy-pose task is different from the other two.
It evaluates the correctness of the static pose of the avatar when
there are no hard constraints for the avatar’s end-effectors positions
(i.e. no contact points between the avatar and the VE). Thus, three
pose-related metrics were used to assess the accuracy of users’ poses:

• Jaccard Distance JD = 1− G∩U
G∪U (see Fig. 3). It measures the

non-overlap area of the intersection between the 2D projection
G of an example avatar over a plane and the 2D projection U
of the avatar controlled by the user, divided by the union of the
two projections.

• Mean per segment angle error (MPSAE) is defined as:
MPSAE = 1

∥S∥ ∑
∥S∥
ŝ arccos(ŝ∗ · ŝ), where S is the set of seg-

ments of the skeleton, ŝ is the unit vector representing the
direction of a segment s, and ŝ∗ is the direction of the segment
in the given pose.

• Mean per part angle error MPPAE is like MPSAE but only
considers one part of the body such as the spine or the limbs
corresponding to arms and legs.

Participants could only observe the target poses as a 2D projection
on a virtual wall that was located in front of them. Therefore, the
metrics used in this task were all calculated based on the same 2D
projection in the XY plane. For the Jaccard Distance, the lack of
overlap between the two projections must not be a result of the user
position being slightly offset with respect to the observed shape.
Consequently, we iteratively applied translations in the 2D space to
maximize the overlap between the two shapes before computing JD.
For MPPAE, body segments of the avatar were grouped into three
body parts: arms, legs and spine. This separation allowed us to study
animation fidelity’s impact individually on different body parts.

At the end of each block of tasks, participants completed a ques-
tionnaire (Table 1) which was adapted from a standard questionnaire
from Virtual Embodiment Questionnaire (VEQ) [29]. The embodi-
ment was measured through three main aspects: agency, ownership
and change. Agency measures the sense of control, ownership mea-
sures the sense of owning the virtual body as if it is one’s own real
body, and change measures to what extent one feels the virtual body
scheme differs in size from one’s own real body.

The VEQ does not assess self-location discrepancies since it is
not the goal of typical VR applications to produce such effects [29].
In our experiment, the use of the pelvis tracker guaranteed a correct
placement of the self-avatar. The appearance and size of the avatar
were kept the same through all conditions to guarantee that the only
perceived differences would come from the changes in animation
fidelity. Questions about change in VEQ are typically studied in
the context of body swap experiments that manipulate avatars’ body
size, sex, race, etc. [18,38,39]. However, with the avatar’s height and
body proportions consistent with the user’s physical body, change is
not expected to be an influencing factor in our study.

The goal of the embodiment questionnaire was to gather the
global experience after running the three tasks, so that it would
gather both the importance of correct end-effector positioning and
the accuracy of the body pose. We decided against asking the 15
questions after each task to avoid doing the experiment too long
because it could introduce a biased source.

3.6 Hypotheses

We hypothesize that better animation fidelity would lead to better
performance in terms of reducing the number of collisions, and also
their volume and duration. Although our conditions had varied trade-
offs in terms of the different components of animation fidelity (pose
accuracy vs end-effector accuracy, as well as latency), we expected
the highest performance for the full-body IMU-based motion capture
system, followed by IK methods with VR devices as input. Similarly
we would expect the full-body IMU-based motion capture system
to outperform the IK solution when copying body poses given its
higher number of sensors allowing for a more accurate capturing of
the user pose. Finally we expected animation fidelity to affect the
SoE of the user. Therefore, our hypotheses are:

H1 Animation fidelity impacts performance of the user in step-over-
spikes and pick-and-place (tasks that require precise interaction
with the environment), in terms of unintended collisions and
completion time.

H2 Animation fidelity impacts performance in copy-pose task,
which requires accuracy in the body pose.

H3 Animation fidelity affects the SoE.

4 RESULTS

In this section we summarize the results of our experiment. The
complete list of statistical significance and post-hoc tests values can
be found in Table 2.



Metric Test Post-hoc

Step-over-spike Task

Volume Per Collision (v) Friedman test Wilcoxon test with Bonferroni adjustment
χ2(2) = 11.80, p = .003,W = .235 MoCap > UIK ( p = .014,r = .552), MoCap > FIK (p = .009,r = .573)

Duration Per Collision (t) Friedman test -
χ2(2) = 4.16, p = .125(ns),W = .083 -

Collision Frequency ( f ) Friedman Test Wilcoxon test with Bonferroni adjustment
χ2(2) = 17.40, p < .001,W = .347 UIK > FIK (p = .002,r = .643) and MoCap > FIK (p < .0001,r = .772)

Completion Time (T ) One-way within-subject ANOVA Pairwise t-test with Bonferroni adjustment
F2,48 = 4.870, p = .012,η2 = .064 MoCap > FIK (p = .003)

Pick-and-place Task

Volume Per Collision (v) Friedman test -
χ2(2) = .72, p = .698(ns),W = .014 -

Duration Per Collision (t) One-way within-subject ANOVA Pairwise t-test with Bonferroni adjustment
F2,48 = 3.374, p = .043,η2 = .056 Non-significant

Collision Frequency ( f ) One-way within-subject ANOVA Pairwise t-test with Bonferroni adjustment
F2,48 = 19.309, p < .0001,η2 = .209 UIK > FIK (p < .0001) and UIK >MoCap (p < .001).

Completion Time (T ) Friedman Test Wilcoxon test with Bonferroni adjustment
χ2(2) = 6.32, p = .042,W = .126 UIK > FIK (p = .017,r = .541).

Copy-pose Task

Jaccard Distance (JD) Friedman test Wilcoxon test with Bonferroni adjustment.
χ2(2) = 24.60, p < .0001,W = .491 UIK > FIK (p = .003,r = .632). UIK > MoCap (p < .0001,r = .848). FIK >

MoCap (p = .005,r = .605).

Mean Per Segment Friedman test Wilcoxon test with Bonferroni adjustment
Angle Error (MPSAE) χ2(2) = 44.20, p < .0001,W = .885 UIK > FIK (p < .0001,r = .826). UIK > MoCap (p < .0001,r = .874). FIK >

MoCap (p < .0001,r = .864).

Aligned Rank Transform ANOVA Tukey’s test
Animation Fidelity
F2,192 = 179.680, p < .0001,η2 = .652 UIK > FIK (p < .0001). UIK > MoCap (p < .0001). FIK > MoCap (p < .0001).

Mean Per Segment Body Part
Angle Error (MPPAE) F2,192 = 244.480, p < .0001,η2 = .718 Arms > Legs (p < .0001) and Arms > Spine (p < .0001).

F4,192 = 133.460, p < .0001,η2 = .735

For each Body Part:
Arms: UIK > FIK (p < .0001) and UIK > MoCap (p < .0001)

Animation Fidelity : Body Part Legs: UIK>FIK (p < .0001). UIK>MoCap(p < .0001). FIK>MoCap (p = .003).
Spine: FIK > UIK (p < .0001) and FIK > MoCap (p < .0001)

For each Animation Fidelity condition:
UIK: Arms>Legs(p < .0001). Arms>Spine(p < .0001). Legs>Spine(p < .0001).
FIK: Arms>Legs (p< .0001). Arms>Spine (p< .0001). Legs>Spine (p< .0001).
MoCap: Arms>Legs (p < .0001) and Arms>Spine (p < .0001).

Questionnaire

Overall Score One-way within-subject ANOVA Pairwise t-test with Bonferroni adjustment
F2,48 = 21.033, p < .0001,η2 = .155

UIK < FIK (p < .0001). UIK < MoCap (p < .001).

Agency One-way within-subject ANOVA Pairwise t-test with Bonferroni adjustment
F2,48 = 20.888, p < .0001,η2 = .168 UIK < FIK (p < .0001) and UIK < MoCap (p < .001).

Ownership Friedman test Wilcoxon test with Bonferroni adjustment
χ2(2) = 14.5, p < .001,W = .290 UIK < FIK (p < .001,r = .771).

Change Friedman test Wilcoxon test with Bonferroni adjustment
χ2(2) = 2.06, p = .358(ns),W = .041 Non-significant

Table 2: Statistical results. For task performance data, a higher value implies worse performance. For the questionnaire higher score is better.
W value: 0.1-0.3 (small effect), 0.3-0.5 (medium effect) and ≥ 0.5 (large effect). η2 value: 0.01-0.06 (small effect), 0.06-0.14 (medium effect),
≥ 0.14 (large effect). r value: 0.10 - 0.3(small effect),0.30 - 0.5(moderate effect) and ≥ 0.5 (large effect).

v t f T

Spike-over-spikes Task
UIK 101.0(61.7) 0.060(0.067) 0.189(0.189) 102.0(25.6)
FIK 86.2(81.3) 0.044(0.038) 0.099(0.125) 95.3(20.7)
MoCap 126.0(34.4) 0.068(0.036) 0.361(0.377) 110.0(23.6)

Pick-and-place Task
UIK 187.0(57.2) 0.271(0.090) 0.516(0.305) 101.0(38.0)
FIK 183.0(81.9) 0.280(0.085) 0.268(0.178) 78.1(27.4)
MoCap 171.0(65.9) 0.231(0.091) 0.283(0.166) 80.6(19.0)

Table 3: Mean and standard deviation for metrics of step-over-spikes
task and pick-and-place task.

4.1 User performance on interaction tasks

We first present the results of user performance on the tasks that
involved a direct interaction with the VE. Table 3 shows the mean

(M) and standard deviation (SD) of all the metrics of the step-over-
spikes and pick-and-place tasks. Fig. 4 shows the violin plots of the
metrics of both tasks.

Shapiro-Wilk tests showed significant departures from normal-
ity for all three measures of the step-over-spikes task. Therefore,
non-parametric within-subjects Friedman tests were used and they
revealed significant differences for all metrics between animation
fidelity conditions. Animation fidelity significantly affected volume
per collision and collision frequency but not duration per collision.
Table 2 includes a summary of χ2(2), p-values and effect sizes
calculated for these metrics. Pairwise post-hoc tests (Wilcoxon
signed-rank tests) showed that MoCap had significantly higher val-
ues than FIK for all metrics except duration per collision, and a
significantly higher value than UIK for collision frequency. It also
showed UIK had significantly higher collision frequency than FIK.

For the pick-and-place task, Shapiro-Wilk tests showed that vol-
ume per collision and completion time data violated the normality
assumption (p<.05), while the other two metrics did not. Therefore,



Figure 4: Violin plots for metrics of the step-over-spikes and pick-and-place tasks, showing results for collisions and task completion time.
Asterisks represent the significance level: * (p < .05), ** (p < .01), *** (p < .001), **** (p < .0001).

Friedman tests and post-hoc Wilcoxon signed-rank tests were con-
ducted for volume per collision and completion time, while one-way
within-subject ANOVAs and pairwise t-tests were conducted for the
others. The results revealed a significant effect of animation fidelity
on duration per collision and collision frequency. Post-hoc tests
showed that UIK had significantly higher collision frequency than
FIK and MoCap, and a longer completion time than FIK.

Therefore, hypothesis [H1] was validated by these results of
interactions tasks performed for both the upper body and lower body.
We further analyze these results in Section 5.

4.2 User performance on pose-related tasks

We summarize the M and SD for all metrics of the copy-pose task in
Table 4 and present the corresponding violin plots in Fig. 5. Shapiro-
Wilk tests showed both JD and MPSAE data had a non-significant
departures from normality (p < .05). Friedman tests were thus con-
ducted for both metrics and revealed significant differences among
the three animation fidelity conditions with medium to large effect
sizes. Pairwise Wilcoxon tests with Bonferroni p-value adjustment
demonstrated significant differences in all pairs of conditions. For
both metrics, UIK had significantly higher error values than FIK and
MoCap, and FIK had significantly higher errors than MoCap.

For MPPAE, we used a two-way repeated measures Aligned
Rank Transform (ART) ANOVA after asserting the normality with a
Shapiro-Wilk test (p < .05). The result revealed a significant main
effect of animation fidelity and body part on MPPAE. It also showed
a significant interaction effect between animation fidelity and body
part. First, the post-hoc Tukey’s tests demonstrated that, for all
animation fidelity conditions, MPPAE was significantly higher for
arms than for legs and spine. Next, when comparing the MPPAE for
each body part, Tukey’s tests showed that, for arms, the MPPAE was
significantly higher for UIK than for the other conditions. For legs,
UIK had significantly higher MPPAE than FIK and MoCap, and FIK
had significantly higher MPPAE than MoCap. For the spine, FIK
had significantly higher MPPAE than other conditions.

To summarize, these results validated our hypothesis [H2] in
the sense that the pose errors were significantly lower when using
MoCap than IK solutions.

JD MPSAE MPPAE

UIK
Arms 28.6(3.45)

0.539(0.035) 13.90(1.51) Legs 9.09(0.98)
Spine 5.90(1.43)

FIK
Arms 16.1(3.45)

0.512(0.040) 11.10(2.10) Legs 7.22(1.67)
Spine 10.1(3.26)

MoCap
Arms 13.9(2.23)

0.476(0.038) 8.03(1.19) Legs 5.85(1.33)
Spine 5.08(1.38)

Table 4: Mean and standard deviation for metrics of the copy-pose
task.

4.3 Sense of Embodiment

Table 5 shows the M and SD of the overall score of the SoE and
subcomponent scores for agency, ownership and change. The violin
plots for these scores can be found in Fig. 6. A one-way within-
subject ANOVA showed a significant effect of animation fidelity on
overall score of the SoE. The post-hoc tests (pairwise t-test) showed
that the SoE score for UIK was worse than both FIK and MoCap.

We analyzed the average score of agency questions, Q1 - Q7, with
a one-way within-subject ANOVA (see Fig. 2 for test values). The
result showed a significant effect of animation fidelity on agency
score. The post-hoc tests (pairwise t-test) showed that users reported
the SoA in UIK significantly lower than FIK and MoCap.

Since a Shapiro-Wilk test showed a non-significant departure
from normality, a Friedman test was conducted for the average score
of ownership questions, Q8 - Q10. The result showed a significant
effect of animation conditions on ownership. The post-hoc test
(Wilcoxon test with Bonferroni p-value adjustment) showed UIK
had a significantly lower ownership score than FIK.

The same set of tests as ownership were conducted for the average
score of change questions, Q11 and Q12. A Friedman test showed
no significant effect of animation conditions on change. post-hoc
tests showed no significant difference on change in all condition
pairs. Overall, these results validated our hypothesis [H3].



Figure 5: Violin plots of metrics obtained for the copy-pose task. Asterisks represent the significance level: * (p < .05), ** (p < .01),
*** (p < .001), **** (p < .0001).

Figure 6: Violin plots for overall score of the SoE and scores for agency, ownership and change individually. Asterisks represent the significance
level: * (p < .05), ** (p < .01), *** (p < .001), **** (p < .0001).

Overall Agency Ownership Change

UIK 4.03(1.18) 4.22(1.51) 4.19(1.54) 3.1(1.34)
FIK 4.91(0.774) 5.29(0.97) 5.32(0.92) 2.98(1.35)
MoCap 4.87(0.919) 5.37(0.99) 4.91(1.20) 3.08(1.79)

Table 5: Mean and standard deviation for the overall score of the
SoE and scores of subcomponents.

5 DISCUSSION

5.1 Accuracy of body pose vs. end-effector positioning
As expected, a motion capture suit is able to capture most of the
human motion and accurately represent poses, as opposed to apply-
ing IK using only a few trackers as end-effectors. We quantitatively
assessed this with the copy-pose task and found that the MoCap
method performed significantly better than UIK and FIK for all
metrics. Poses with MoCap were best aligned with the given poses
and also when analyzing each body segment independently.

Therefore, we would expect MoCap to perform better in other
tasks due to the high-quality tracking of poses. However, we found
that high-quality poses do not improve task performance when tasks
are not directly related to the pose, and instead require direct inter-
actions with the VE. One possible explanation is that the positional
drift from inertial systems results in the end-effectors moving away
from their actual position. When this happens, the user’s hands
and feet are no longer co-located with their virtual representations,
thus introducing inconsistencies (see Fig. 7). The higher latency of
MoCap may have also contributed to these performance differences.

In the step-over-spikes task, MoCap was significantly worse than
FIK in volume per collision, collision frequency and completion
time. MoCap was significantly worse than UIK in volume per colli-
sion. We believe that for this task, having an accurate positioning of

the feet (no drift) made users feel more confident and reliable when
positioning the feet on the ground to avoid spikes. Both FIK and
UIK achieved good foot positioning because IK solvers enforced the
position of the feet to be the same as the trackers. In contrast, since
MoCap is an IMU-based motion capture system, it does not have
precise global positioning of the joints.

To lessen the positional drift issue, we moved the MoCap avatar to
match the position of the VR pelvis tracker. This improves the over-
all co-location between the user and its avatar, but it may increase
foot sliding. For instance, when one leg is acting as a supporting leg
on the ground as the user’s pelvis moves, if the pelvis of the MoCap
animated avatar is forced to follow the HTC pelvis tracker, it makes
the foot slide on the ground and increases the risk of collision with
obstacles. To minimize this problem, we implemented a foot lock
algorithm. This alleviated foot sliding but not the global position
accuracy of the feet.

Overall, if the task requires accurate foot placement, it may be
necessary to include foot trackers to position them accurately in the
VE, while correctly posing all joints may not be necessary.

5.2 Upper body animation for accurate interactions with
the environment

In the pick-and-place task, UIK performed significantly worse than
MoCap and FIK in terms of collision frequency. However, we found
MoCap and FIK to perform similarly. This is consistent with the
results of the MPPAE in the copy-pose task, for which UIK also
performed worse than MoCap and FIK due to incorrect elbow posi-
tioning. For the pick-and-place task, users had to correctly position
the arm to reach the goal without touching the obstacles. The in-
correct elbow positioning in UIK made the task more complicated,
and thus more prone to collisions. We also found that users took
significantly longer to finish the task with UIK than with FIK.



Figure 7: End-effectors positioning with respect to controllers for
the different animation conditions.

When comparing FIK and MoCap, our results suggest that the
additional tracking data for the elbows in MoCap did not help the
participants achieve better performance in terms of collision avoid-
ance in the pick-and-place task, and also in the arm part of pose
replication in the copy-pose task. Even though MoCap provides a
more accurate elbow position, we believe that the inaccurate end-
effector positions lead to more collisions with the obstacles. Another
explanation may be due to the latency of the MoCap. A few par-
ticipants commented that their virtual arms were less responsive
when using MoCap while performing the pick-and-place task. As
Waltemate et al. [36] stated, when latency increases above 75ms,
user’s motor performance in VR tends to decline.

Even if FIK provides less accurate poses for the elbows, its respon-
siveness and end-effector accuracy compensate for this. Participants
can quickly avoid obstacles by adjusting the controllers’ position.
The result is consistent with the work by Parger et al. [24].

5.3 Performance differences between arms and legs
The results of the MPPAE in the copy-pose task suggest that the
arm poses were less precise than the leg poses. The angle error was
larger in the arms than in the legs for all conditions. One possible
explanation is that the range of movements a human person can do
with their upper body is wider than with the lower body. We also
studied whether users noticed the tracking inaccuracy by comparing
the scores given in questions related to arms (Q2-Q4) and legs (Q5-
Q6). The score for arms (M = 4.60, SD = 1.19) was statistically
(p< .0001) lower than legs (M = 5.41, SD= 1.05) when performing
a t-test. When performing a two-way ANOVA, adding the animation
fidelity as a condition, we found no statistical difference between
the scores given to the arms questions between FIK and MoCap.

The participant-reported differences in responsiveness between
FIK and MoCap for arm movement were not observed for the legs
during the step-over-spikes task.

Based on the result above, we recommend focusing on the upper
body when animating a self-avatar since it seems necessary to have
higher-quality animations for arms. Lower-quality animation may be
enough for the legs. Therefore, as some works have suggested [27],
it may not be necessary to include all tracker devices for the lower
body when the task does not require accurate foot placement.

5.4 High Sense of Agency can be achieved with a small
set of tracking devices

The questionnaire data showed no statistically significant differences
between FIK and MoCap. However, as mentioned before, MoCap
achieved better results (JD and MPSAE) than FIK and UIK in the
copy-pose task. It suggests that the SoA is not only related to the
pose, but also to the interaction with the VE, e.g., we found that in
the pick-and-place task MoCap did not achieve the best results.

In other words, our results suggest that one can feel the same level
of control over self-avatars animated by a high-end motion capture
suit with 17 IMUs or a small set of tracking devices (one HMD, two
controllers, and three trackers) and a high-quality IK solution. This

finding is consistent with Galvan Debarba et al. [10] that suggested
a total of 8 trackers were enough to achieve the same plausibility
illusion as an optical-based motion capture system with 53 retro-
reflective markers. Goncalves et al. [12] suggested that increasing
tracking points, from 3 to 6, does not significantly improve the SoA.

More research is needed to understand how to improve the SoA,
given that a higher number of trackers (MoCap) did not always
improve the agency scores when compared to a full-body IK such as
FIK. Other factors such as end-effectors position accuracy, latency
or animation smoothness may affect the users’ perception.

It would also have been interesting to randomize the task order
so that we could have analyzed whether the results of the SoE were
affected by which was the last task being experienced by the par-
ticipant. However, by looking at the results, we observe that the
step-over-spike task (the first task) had FIK giving better quantitative
results, the pick-and-place task (the second task) had similar perfor-
mance for FIK and Mocap, and in the copy-pose task (the last task)
MoCap had the best results. Even though the last task had better per-
formance for Mocap, the embodiment questionnaires showed similar
results for FIK and MoCap (not statistically significant) which may
indicate that the questionnaire did gather the overall experience.

6 CONCLUSIONS AND FUTURE WORK

We conducted a user study to examine the impact of the avatar’s
animation fidelity on user performance and the SoA. Our results
suggest that the IMU-based motion capture system performed better
than IK solutions for applications that require pose accuracy. How-
ever, IK solutions outperform IMU-based motion capture systems
when directly interacting with the VE. In these cases, accurate end-
effector placement and low latency may be more critical than exact
pose matching due to proprioception. Our study also suggests that a
high-end IK solution with sparse input (6 trackers) can achieve simi-
lar levels of the SoA as an IMU-based motion capture with dense
input (17 trackers). We believe these results give insight into how an-
imation fidelity affects user performance and perception, providing
future research directions toward improving self-avatar animation
fidelity in VR. Our work also highlights the limitations of current
technology to achieve correct self-avatar animation (such as latency,
end-effectors and body pose inaccuracy), and thus motivates future
research to overcome these issues.

A limitation of our experiment is that the robotic avatar did not
accurately match the shape of the participant. Since the avatar’s
limbs were much thinner than the participants’ ones, and because
they used hand-held controllers, self-contacts suggested by some
copy-pose targets were not reproduced by the avatar (regardless of
the condition). In fact, no participant referred to this issue. Further
studies are required to study the role of animation fidelity and self-
contact [2] when the avatar accurately matches the user’s shape.

For future research, we would like to investigate whether partici-
pants could perform better using an optical motion capture system,
providing both accurate pose and global position. This new con-
dition will allow the decoupling of the positional drift issue from
the accuracy of the body pose, allowing for a more in-depth study
of the perceptual results. We believe future studies that integrate
hand tracking like RotoWrist [30] or data-driven methods for self-
avatar animation would be valuable to provide more insight into how
animation fidelity impacts the SoE and user performance in VR.
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